

Incentive-Compatible Solutions for Efficient Energy Consumption and Reliable Power System Operation

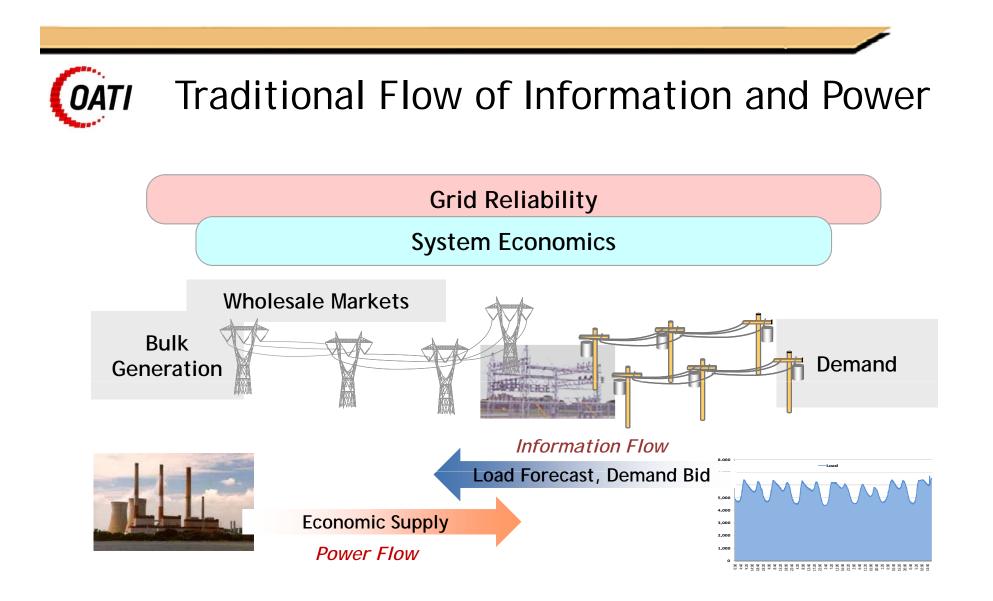
Farrokh Rahimi, Ph.D.

Vice President, Market Design & Consulting Open Access Technology International, Inc. (OATI)

Prepared for Presentation at the Plenary Session: Shifting Smart Grid Focus to Customer Driven Performance Outcomes

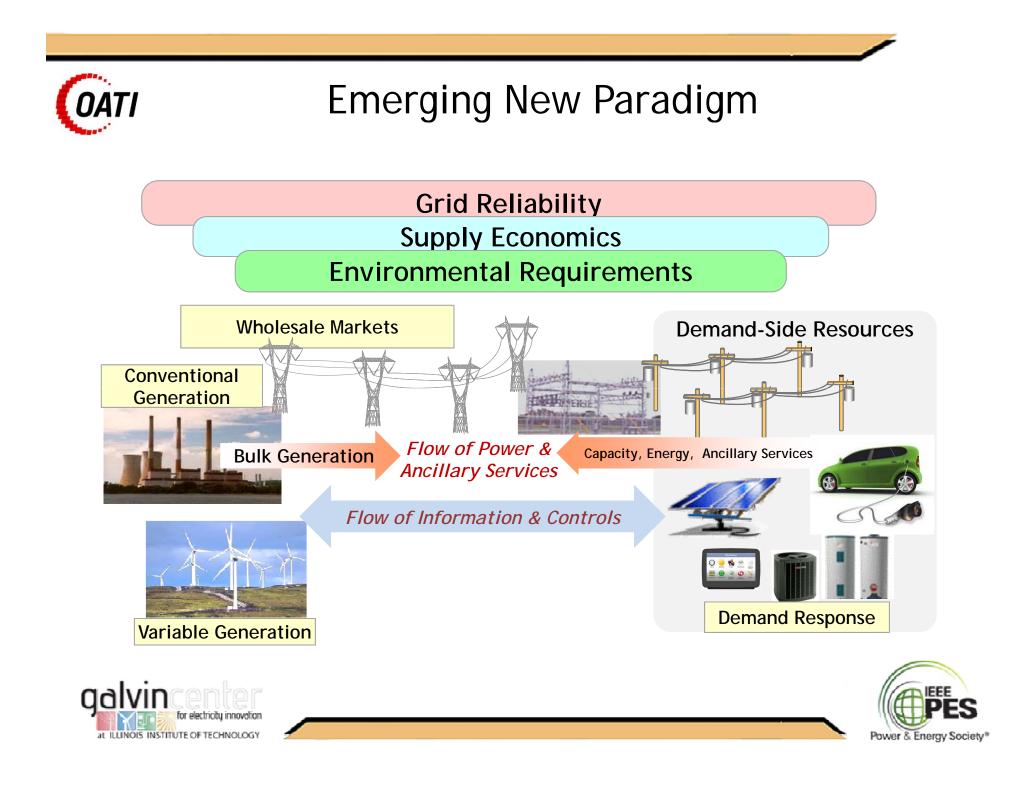
Great Lakes Symposium on Smart Grid and the New Energy Economy Galvin Center, IIT, Chicago, IL September 24-26, 2012

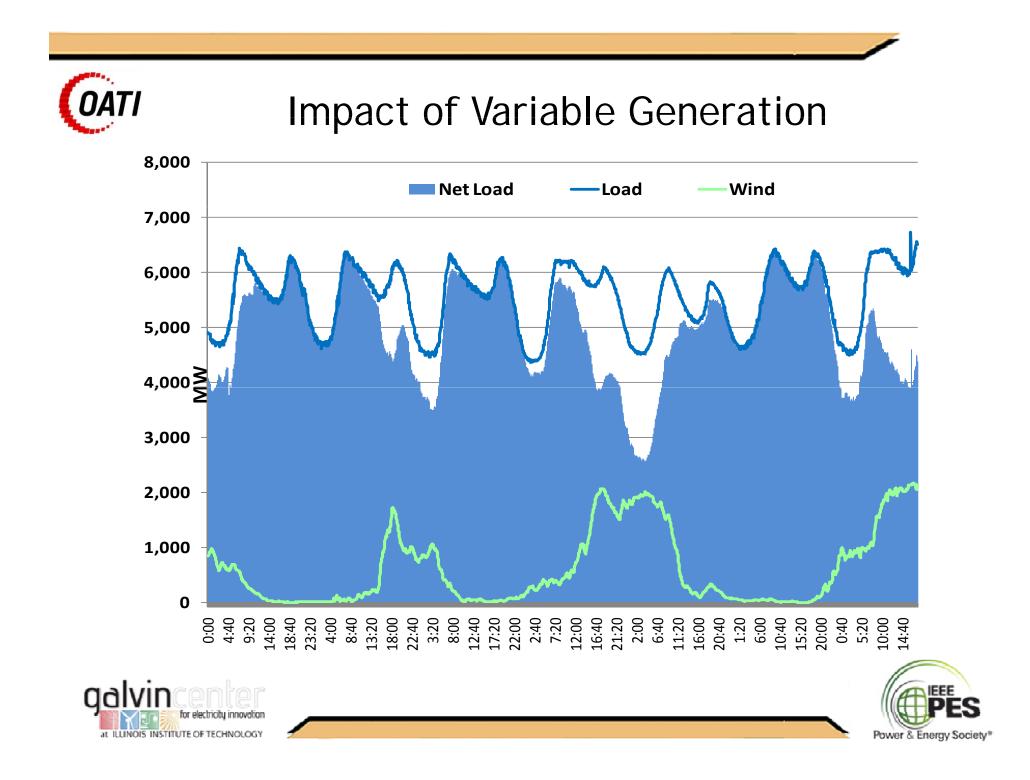
1



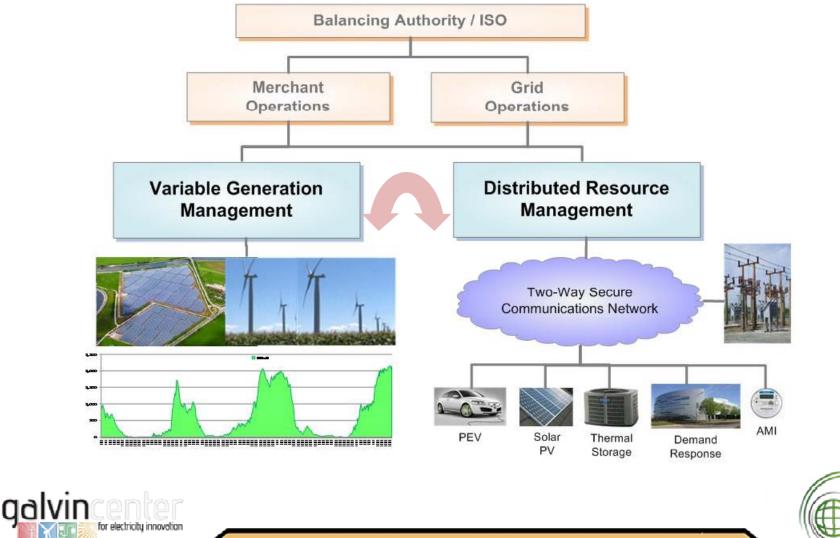
Topics

- New Electricity Supply-Demand Paradigm
- Regulatory Issues Related to Demand-Side Participation
- An End-to-End Solution Framework for Consumer Participation in Energy Markets with Beneficial Impact on Power System Operations



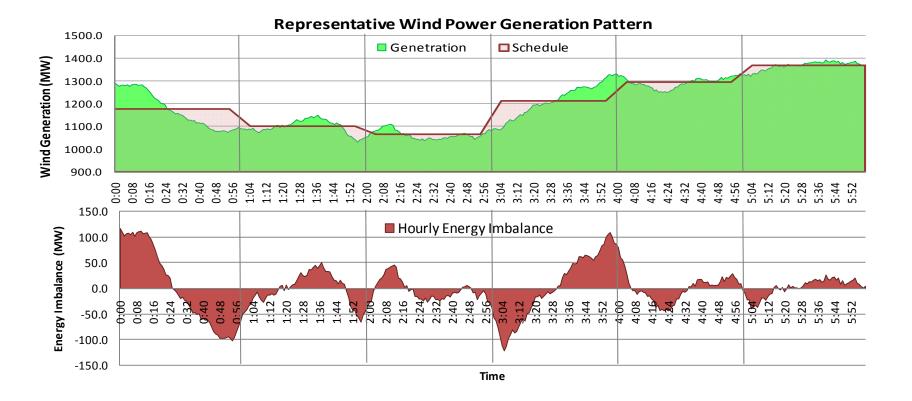


OATI **Conventional Generation Dispatch Scenario** 8,000 -Load 7,000 Ramping 6,000 5,000 ≷ ≰,000 Cycling Interchange 3,000 **Fossil Base Load** 2,000 1,000 Nuclear Base Load 0 $\begin{array}{c} 0:00\\ 4:40\\ 9:20\\ 23:20\\ 4:00\\ 4:00\\ 118:40\\ 22:20\\ 22:40\\ 22:40\\ 22:40\\ 22:20\\ 22:00\\ 22:12\\ 22:00\\ 22:00\\ 22:00\\ 22:00\\ 110:20\\ 0:40\\ 0:40\\ 0:40\\ 0:40\\ 0:40\\ 0:40\\ 0:40\\ 0:40\\ 0:40\\ 0.10:00\\ 0$



at ILLINOIS INSTITUTE OF TECHNOLOGY

Demand Response as a "Dancing Partner" of Variable Energy Resources



Pewer & Energy Society*

OATI	Regulatory Initiatives		
October 2008	 FERC Order 719 - ISOs Treatment of Demand Response (DR): Equal Treatment of Supply and Demand Side Resources Curtailment Service Providers 		
March 2009 •	FERC Smart Grid Policy Statement and Action Plan Digital technology to enable real-time coordination of information from generation resources, demand resources, and distributed energy resources 		
July 2010 •	FERC National Action Plan - DR		
March 2011 •	FERC Order 745 - Demand Response Compensation in Organized Wholesale Energy Market		
	– DR is paid by Location Marginal Price (LMP)		
July 2011 •	FERC Order 1000 - Regional Transmission Planning and Cost Allocation		
	 must consider more efficient or cost-effective alternatives , e.g., DR and Energy Efficient (EE) 		
April 2012 •	FERC NOPR on DR Measurements and Verification		
·	NAESB Phase II M&V and Baseline definitions		
June 2012 •	FERC Order 764 - Integration Of Variable Energy Resources		
	– Intra-hourly scheduling - 15 minute		
	– Forecast Data		
•	NARUC/FERC Smart Grid Collaborative		
aslvincester	Bridge Federal and State Level Initiatives and Regulations		
for electricity innovation	- FERC Order		
at ILLINOIS INSTITUTE OF TECHNOLOGY	Power & Energy Society*		


Balancing Energy Requirements with High Wind Power Generation under Hourly Scheduling Practices

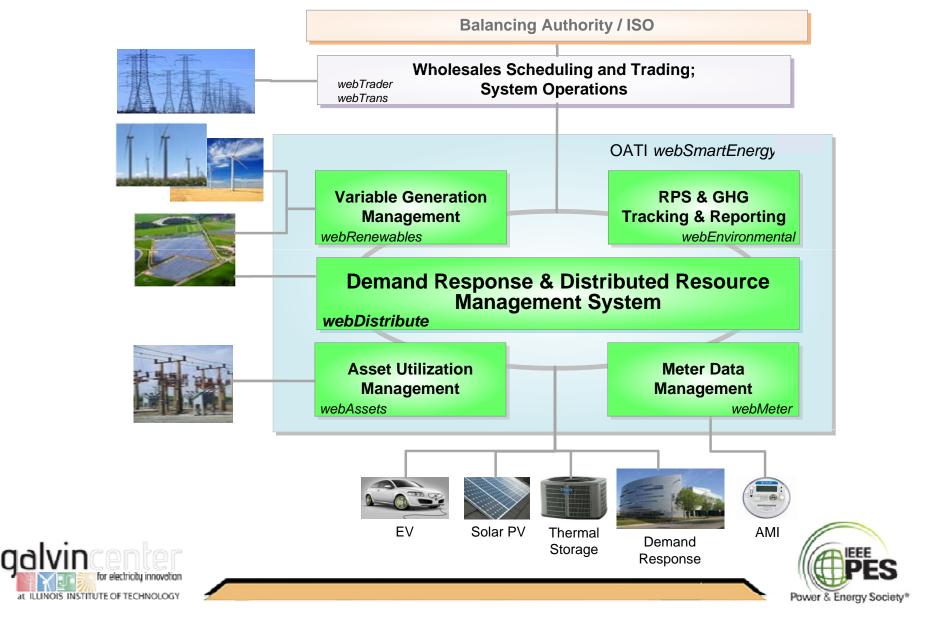
CATI Reduction of Balancing Energy Requirements under Sub-Hourly Scheduling

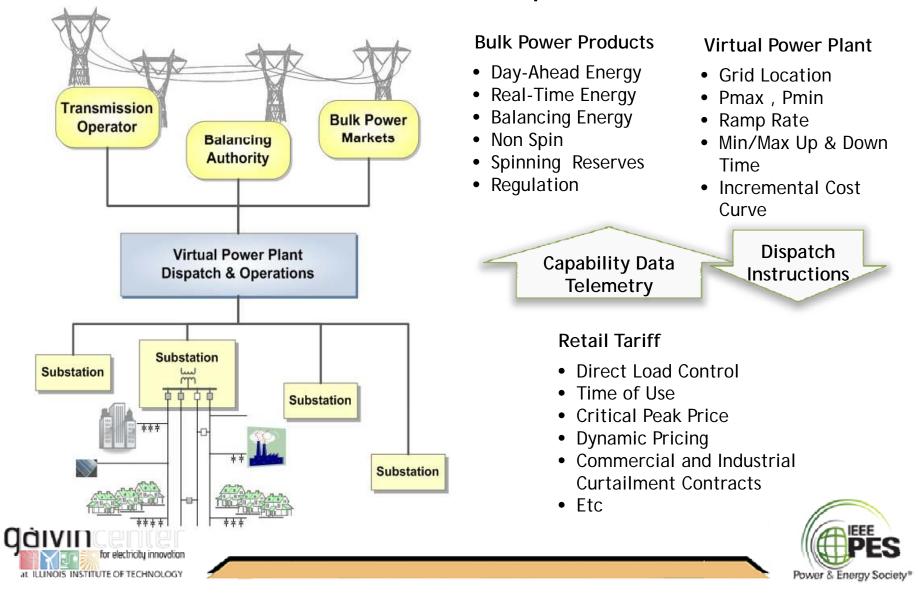
New Products and Practices

- Energy Imbalance (Energy Product)
 - 5-15 Minute Product
 - Similar to "Load Following" capability
- CAISO Flexible Ramping Product Proposal
 - A 5 minute Ramp Up, and Ramp Down products
 - Stakeholder process
- WECC Energy Imbalance Market Proposal
 - Energy Imbalance Market (EIM)
 - A reliability-constrained economic dispatch from voluntary offers of resource to deliver least-cost Imbalance Energy supply
 - Enhanced Curtailment Calculator(ECC)
 - A seams coordination tool, to manage reliability across the entire interconnection

OATI

Current Challenges

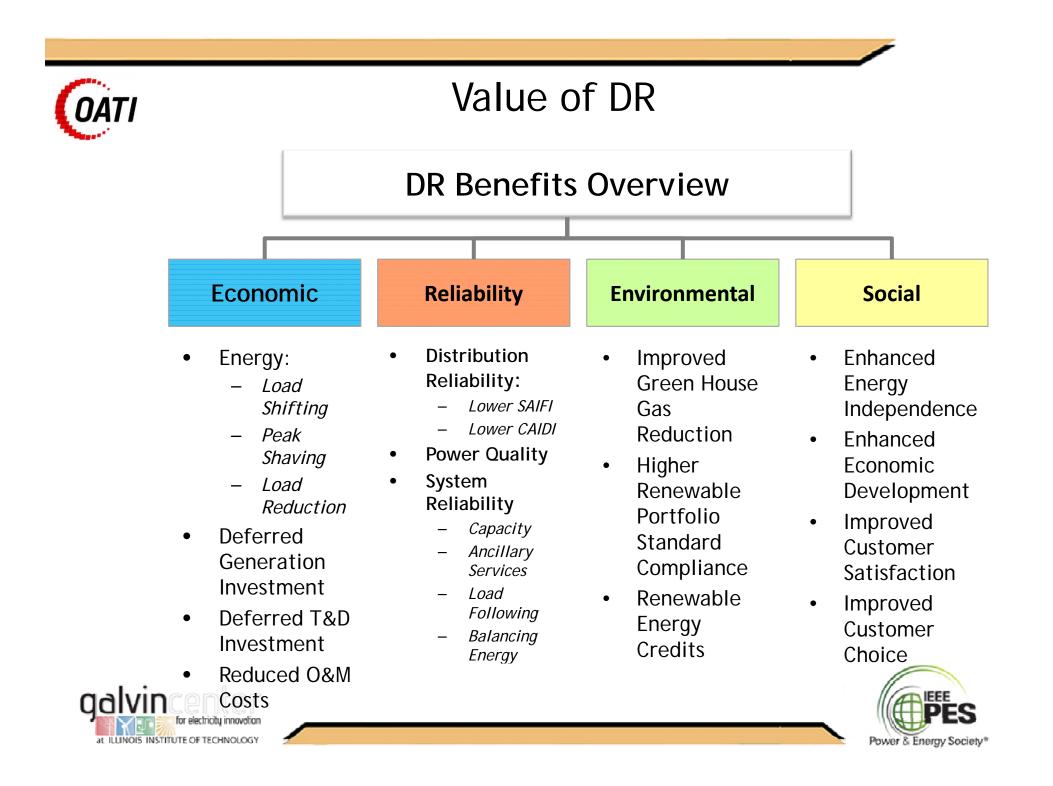

- Seams between Wholesale and Retail Markets
 - Operational
 - Scheduling practices and protocols
 - Retail and Wholesale Coordination
 - Pricing
 - LMPs versus Retail Tariff
 - Distribution Charges
 - Distribution Congestion
 - Rate-Case and Rate-Setting Process
- Impact of Distribution Operation
 - Impact of Voltage Levels on Load
 - Coordination of DR Operations and Distribution Automation



OATI webSmartEnergy Suite of Applications

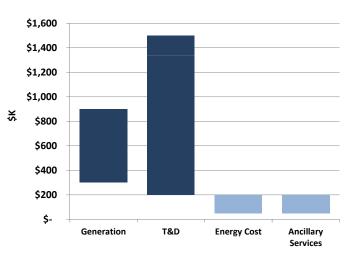
End-to-End Transactions of Information, OATI Prices, and Power Generation Legend: Bids; Schedules **Wholesale** Electricity **Bulk Generation** Bulk Power **Markets** Data Capacity, Energy, Ancillary Services Transmission Pricing Wholesale Supply Bids, Offers; VVV Prices Congestion Awards Merchant **Transmission Grid** Transmission **Operations** Substation Sub -**Demand Forecast** Transmission Resource **Retail Power** Availability Distribution **Distribution Grid Retail Operations** Substatior Distribution Supply and Enrollment; **Retail Rates** Demand Controls and Incentives **Consumers**, Devices for electricity innovation at ILLINOIS INSTITUTE OF TECHNOLOGY Power & Energy Society*

OATI Virtual Power Plants - closing the gap between Retail and Wholesale Operations



(OATI DR/DER Applications - Objectives (System Operation)

Economical Objectives	Reliability Objectives	Environmental Objectives	Enhance Customer Choice
Peak Load Reduction - Defer Capital Expansion	Reduce Facility Loading	Improved RPS Compliance	Meeting Customer Need
Shift Load to Lower Cost Period	Provide Ramping and Balancing Energy	Reduce GHG Emissions	Enhance Service Innovation
Trade and Market Opportunities	Provide Ancillary Services and Regulation		
Serve Isolated Remote Load	Improve Power Quality		
<u></u>	Provide for Micro-Grid Operation		

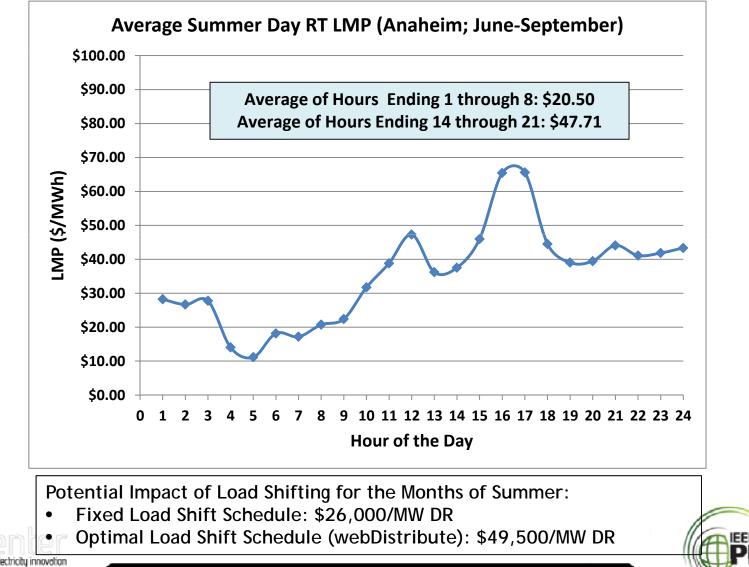


Overall Benefit Ranges per MW of DR

- Generation Capacity Cost Savings
 - Annual Savings per MW of DR: \$40K \$120K
 - NPV: \$300K \$900K per MW of DR

Note: NPV Cost of a CT ~ \$600K per MW

- T&D Cost Savings
 - Widely different among Regions
 - Sample quoted number
 - High Annual Savings NPV: \$1.5M per MW of DR
 - Low Annual Savings NPV: \$200K per MW of DR
- Energy Cost Savings
 - A few thousand dollars per MW of DR per year
 - NPV Range: \$50K \$200K per MW of DR
- Savings/Revenues from Ancillary Services
 - A few thousand dollars per MW of DR per year
 - NPV Range: \$50K \$200K per MW of DR
- Total Cost Savings per MW of DR
 - NPV: \$600K \$2.8M per MW of DR



at ILLINOIS INSTITUTE OF TECHNOLOG

Load Shifting Benefit Example (Based on CAISO RT Market LMPs July 01, 2009 to June 30, 2010)

Power & Energy Society

Closing Remarks

- New electricity supply-demand paradigm
 - Increased use of renewable resources
 - Increased demand-side participation
- Paradigm shift is in power system and energy market operations
 - Variability and unpredictability of Variable Energy Resources (VER)
 - Need for new products (ramping, load following, etc.)
- Possibility of end-to-end solutions
 - Smart Grid technologies are available for extensive consumer participation
 - End-to-end incentive-compatible solutions are available (e.g., OATI webDistribute platform)
- Regulatory issues
 - FERC Orders (719, 745, 1000, 764, etc.) facilitating participation of DR in wholesale markets and scheduling of VER
 - Main issue: Local regulatory barriers

Questions?

Thank You Farrokh Rahimi Farrokh.Rahimi@oati.net

